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Abstract The thermodynamic and structural properties of a fluid of hard axially symqeuic 
ellipsoids are studied on the basis of two approximations, namely that (a) the orientations of 
the molecules can be restricted to a discrete number of directions and (b) the direct correlation 
function cm be written as a superposition of t h e  geometrical functions with weights which 
depend on the density of the fluid. The variational principle of Anderson and Chandler is used 
to determine the weights. The equation of state of the fluid is derived for a range of values 
of the ratio of axes (elongation) from 0.35 to 5.0. For comparison new simulations have been 
performed on the same systems. Except at the greatest elongation. the theoretical pressure agrees 
very well with the simulated pressure of the restricted orientation model as well as with that 
of a fluid of freely rotating ellipsoids. When the elongation is 5.0, the pressure of the fluid of 
freely rotating ellipsoids lies b e w h a t  above the pressure of the restricted orientation model, 
although for this model the theory and simulation are still in accord. Thus far the theory has 
not revealed a transition to a nematic state although there is some evidence from simulation that 
when the elongation is 5.0, the isotropic state of the restricted orientation model is not stable. 

The direct correlation function of the homogeneous phase is used in conjunction with a 
density functional  in order 0 investigate the density profile of the filrid confined to a slit. 
Except in the neighbourhood of a wall there is very good agreement between the theory 
and simulation. The discrepancy n w  the wall is to be expected from the simple form of 
functional used. Overall it appears that the approximation developed is adequate for describing 
the thermodynamic properties of the homogeneous and inhomogeneous isotropic state. but that 
it needs some improvement for studying the properties of the nematic state. 

1. Introduction 

In previous papers [1-4], the authors and collaborators have studied theoretically the 
structure of inhomogeneous fludis of hard molecules of various shapes including ellipsoids 
and cylinders. We have used a model in which the orientations of the molecules are 
restricted to certain directions. Qualitatively, at least for bulk densities which are not 
too high and for shapes which are not too anisotropic, reasonable agreement was found 
between the theoretical predictions and the results of computer simulation of the same 
systems. In addition, many of the significant features of fluids of freely rotating molecules 
were reproduced. 

However, at high densities and for very anisotropic molecules there were serious 
discrepancies between the theoretical predictions and the results of simulation. For example, 
according to the simplest version of the theory, a fluid of disc-shaped cylinders with a ratio 
of length to diameter of 0.25 would make a transition to a nematic state at a packing fraction 
of 0.18 and a further transition to a spatially-ordered state at a packing fraction of 0.202 [5]. 

0953-8984/95/478839+18$19.50 @ 1995 1OP Publishing Ltd 8839 
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A simulation by one of us 161 for the same model at a.packing fraction of 0.238 revealed 
no such phase transitions and no long-range order. 

The theory as applied hitherto involved one extreme simplification not required by 
the basic theory but introduced in order to implement and simplify the calculations. The 
remarkable thing is that even with this simplification the theory gave satisfactory results 
over a wide range of parameters; it is not surprising to find that ultimately it breaks down. 
In this paper we consider the effect of improving upon this original simple approximation. 
A preliminary account of part of this work has appeared in [7]. 

As with many other density functional theories of the structure of inhomogeneous fluids 
both simple and molecular (see [8] for a review of many such theories), the present theory 
requires at the outset a knowledge of the direct correlation function (dcf) of the homogeneous 
fluid. For many simple fluids, especially the much explored hard sphere fluid, there does 
exist a good and tractable approximation for this function, namely the PY solution. This 
partly explains the success of such theories. For fluids of molecules of non-spherical shape 
no such approximations exist. Ab initio calculations of the structure of some homogeneous 
molecular fluids do exist 19,101 but the results are expressed only in a numerical form not 
well suited as an input to calculations of the structure of the inhomogeneous fluid. 

An alternative approach follows the seminal work of Onsager [ 111 on the isotropic- 
nematic transition and is well adapted to the study of very anisotropic molecules. It is 
based upon a vinal expansion in which the higher-order terms are approximated using the 
PY results for hard spheres and re-summed. The free energy is, in this way, expressed in 
terms of the first few virial coefficients 112-151. The validity of the approximation is not 
clear although reasonable agreement with simulation is obtained for very oblate or prolate 
ellipsoids. 

In a wide-ranging study of the thermodynamics of homogeneous fluids of hard 
anisotropic molecules, Rosenfeld and collaborators l16.171 have motivated and introduced 
approximations based on the idea that the direct correlation function of the fluid in the core 
region could be written as a superposition of geometrical functions. In what they call the 
strong-coupling limit (high density for hard molecules), they showed that it is necessary 
to include the overlap volume of two molecules 1171. In [I61 Rosenfeld also introduced a 
scaled field theory in which the direct correlation function was written as a superposition 
of scaled geometrical functions of two molecules. The weights of these basis functions 
were chosen according to a conformal equation of state based on that for mixtures of hard 
spheres. 

Our own approach is similar in spirit to that of Rosenfeld and is also based on a direct 
correlation function which is written as a superposition of scaled geometrical functions of 
two molecules. In our earlier work [l-51, the main concern was to find a simple analytic 
form of direct correlation function which could be used in a density functional from which 
to derive the smcture of an inhomogeneous system. The simplifying approximation was 
made that the direct correlation function for two axially-symmetric molecules oriented with 
their axes aligned in the directions a$ could be represented by the form, 

Cup(T) = Afmp(T) f BFup(T) (1) 

where f = # ( ~ )  and F,B(T) are, respectively, the Mayer function and the overlapping volume 
of the two molecules when their vector separation is T .  In fact the first term is essential in 
the low density limit while the second is, for reasons already given by Rosenfeld, necessary 
in the high density one. Equation (1) interpolates simply between these limits. The form 
given by equation (1) ensures that the direct correlation function satisfies the PY closure 
relation, namely that it vanishes when the molecules do not overlap. The variables A and 
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B were parameters chosen to ensure that the dcf satisfies two relations also satisfied by the 
PY solution of the problem. These conditions lead to two algebraic equations for A k d  
B which are easily solved. The functions f = p ( ~ )  and FmP(7) are purely geometrical; the 
parameters A and B depend upon the density. 

The discrepancy between this theory and simulation referred to above could be waced to 
the fact the direct correlation function of equation (1) did not properly describe the equation 
of state of the homogeneous fluid. Ipsofacto, it could not properly describe the structure of 
the inhomogeneous one. Apart from this the form of equation (1) for the direct correlation 
function does not reproduce the PY approximation even for the hard sphere fluid. This is 
a deficiency than can be remedied by adding a third geometrical function to the form (1) 
[ l a .  

In this paper we study the consequences of adding such a term on the properties of 
both homogeneous and inhomogeneous hard ellipsoidal (HE) fluids. We further extend the 
generality of the ansatz by allowing the coefficients of the geometric functions to depend 
on orientation. Thus we choose the dcf to be of the form, 

(2)  cup(^) = Aapfap(T) + BapFep(T) + D w p S z p ( ~ )  

To define the direct correlation function completely we need to specify the function &P(T) 
and to provide a satisfactory method for choosing the parameters A,B, Bus, Dap. 

In choosing the function Sup(?-), we have been guided by a number of considerations. 
The success of Rosenfeld's scaled field theory [16] suggests that a set of geometrical basic 
functions derived from the dimensions of overlapping ellipsoids should be suitable. The 
overlapping volume is already a member of such a set. A suitable measure of the area of 
overlap is another. In addition we should like the approximate dcf to satisfy the PY closure 
relation. This requires that 

sap@) = 0 (3) 

when the two ellipsoids do not overlap. We also require that the dcf given by equation (2) 
should become the PY approximation in the limit that the ellipsoids become spheres. Finally, 
in order to keep the theory as simple as possible, the tractability of the resulting expressions 
is also a consideration. These thoughts have led YS to choose &B(T) by re-scaling the 
dimensions of the ellipsoids by a factor t and looking at the change in overlapping volume 
as t tends to unity. Explicitly, 

& p ( ~ )  = Iim a [ t 3 ~ u a ( T / t ) i / a t  (4) 
1-1 

Because Fug(?-) is zero when two ellipsoids do not overlap, &(T) also possesses this 
property, i.e. C , ~ ( T )  as given by equation (2)  satisfies the PY closure relation. In addition, 
the PY result for hard spheres is of the form (2). In fact for hard spheres, the expression 
(2) is a cubic polynomial in r (without a quadratic term) as is the PY solution. Since both 
are sums of three linearly-independent terms, the three constants A ,  B and D can be chosen 
uniquely to make them identical. 

To determine the parameters A,@, Bap, D,p, in general, we use a straightforward 
generalization of a variational principle due originally to Anderson and Chandler 1191 which 
is applicable to the present case. This principle has already been extended and exploited by 
Rosenfeld and collaborators [17,20] in studies of fluids of hard molecules with distributed 
charges. However, explicit calculations exist only in cases where the cores are spherical 
or conformal with spherical (e.g. hard parallel ellipsoids). The present calculations include 
perpendicular ellipsoids and most of the complexity of the computation stem from this fact 
(see section 4.1.). 
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If the ansatz (2) were of the form of an exact solution of the PY equations, the variational 
principle would ensure that the pair distribution function, gap@), would be zero when the 
molecules overlap. In the case of spheres, the form (Z), as is explained above, is exact 
and the variational principle does lead to the PY solution. Once the dcf has been obtained, 
the equation of state of the fluid can be derived from either the virial or compressibility 
routes. The direct correlation function can, as originally planned, then be used as an input 
to a theory from which the structure of the fluid in external potentials and when subject to 
constraints can be derived. 

While the ideas presented in this introduction could be applied quite generally the cost 
in both computer time and memory would be formidable. In order to reduce this they have 
so far been applied to the restricted orientation model (ROM) in the form in which it was 
introduced in [I]. This means that the molecules have been permitted to orient in a discrete 
number of directions. In practice for ellipsoids, the directions chosen were those with the 
axes of symmetry of the ellipsoids parallel to one of the co-ordinate axes. Since ellipsoids 
also have a centre of symmetry, in this model they can orient in only three distinct directions. 
The variables CY and @ in equation (2) can therefore each take only the three values 1,2 
and 3 corresponding to alignment parallel to the x-,  y - ,  and z-axes, respectively. Further, 
from the symmetry of the ellipsoids it follows that only two of the functions Fap(r) are 
independent, say FIT (T), FIZ(T), referring to ellipsoids with parallel and perpendicular axes. 
The remaining functions of the set can be obtained from these by appropriate permutations 
of the co-ordinates. The other sets of functions fop('), & p ( ~ )  as well as c,p(r) possess 
the same symmetry. It follows, too, that the parameters A,#, Bap and D,#, have only six 
independent values namely, 

with similar definitions for BI,, B I ,  Dll. DL. 
These six parameters have been determined by means of the variational principle for a 

range of densities or packing fractions, and the resultant direct correlation function is then 
used to derive both the equation of state of the homogeneous fluid and the structure of the 
fluid confined between planar walls. The results have then been compared with those of 
simulation. As simulation results do not exist for the ROM over the range of parameters 
used, we have generated appropriate ones ourselves. In addition, to assess how well the 
ROM represents realistic systems, we have compared our results for homogeneous systems 
with those of other workers for the more realistic case of freely rotating molecules. 

We have also used the theory to search for an isotropic-nematic transition, but over 
the range of parameters so far investigated no such transition has appeared. Nevertheless, 
for reasons given in section 5, we believe that for sufficiently anisotropic ellipsoids such 
a transition will appear. It is the case that in the simulations of the ROM with ellipsoids 
with elongations of 5.0 evidence for the transition has been found. However for the most 
anisotropic molecules, as we discuss below, it takes a long time for stable equilibrium to 
be achieved and for one to establish unequivocally the existence of a transition. 

2. The basic functions and the pressure 

The mathematical expressions for the basic functions &(T) and F a p ( ~ )  for ellipsoids have 
already been given in [3]. However, as we shall need to refer to them frequently we repeat 
them here for convenience. If 2b is the length of the axis of symmetry and 2a the length 
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of the other axes, then 

where , 

and U is a function of x ,  y and z defined implicitly by 

The surface defined by 

f(x, Y ,  z ,  U) = 1 (9) 
is convex, axially symmetric about the y-axis and meets the x-,  y- and z-axes at distances 
from the origin of a + b ,  2a, a + b respectively. This is the surface of the excluded volume 
of two perpendicular ellipsoids. 

The two independent overlapping volumes are 

and 

F13(r) = 1 d3r‘8 (1 - - - - (x  - x’)2 + (y - y‘)2 - V2). (11) 
a2 a2 

The remaining functions, &#(T), can be obtained from these by differentiation. 
For the variational principle used in the following section, we also require the Fourier 

transforms of these functions. Those for the overlap functions and the derived functions 
can be obtained byconvolution. If a Fourier transform is defined by 

then 

where 

&(IC) = 1 dr8  (1 - .z - - (14) 

K = (ak,,ak,,bkJ. (15) 
~ Similarly, 

- 4nazb d sin2K 
f33(k) =-- ~ K d K (  K ) ‘  

The Fourier transform of the perpendicular Mayer function is given by 

&,(IC) = - dTexp(ik. T) (17) s 
where the integral is taken over the excluded volume defined by 

f ( x ,  Y. z, U) = g(x, Y, z, U) < 1 (18) 
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and the functions f and g ,are defined by equation (6) and (7). In addition we require U to 
satisfy 
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a / b < u < b / a  i f a i b  b / a < u < a / b  i f a > b .  (19) 
It is possible to integrate equation (17) over one variable, say, y ,  in a straightforward way. 
If at the same time we collect together the contributions from the negative and positive 
values of x and z, we find that 

hl(k) = -(8/ky) dx dz cos(k,x)cos(k,z) sin(kyy(x, 2)). (20) 

Here y ( r ,  z )  lies on the surface of the excluded volume and is given by equations (7) and 
(8). The function z&) is the maximum value of z for a given value of x and is determined 
from 

Y(X> Z M )  = 0. (21) 
To find the function y ( x ,  z) explicitly, y can be eliminated between equations (6) and (7) 
to yield 

This equation determines U as a function of x and z .  When the result is substituted into 
equations (6) or (7), it provides y as a function of x and z .  Note that there is a symmetry 

h i (kx .kpk)  = h i ( k z , k p k d  (23) 
a property which we exploited in performing the integral. 

basic function, 
Finally, it is not difficult to show from equation (3) that, for any component of the third 

(W 
Once the parameters A,#, Bcp, D,p have been determined, the direct correlation function 
is known and it is possible to derive the equation of state of the homogeneous fluid. As is 
well known there are two standard equations, the compressibility and the virial equations, 
from which the pressure can be derived. With the exact direct correlation function the final 
result is the same whichever route is chosen. However, an approximate direct correlation 
function, even the PY one, usually leads to different answers. The discrepancy is a measure 
of the accuracy of the approximation. We therefore derive both equations for the present 
case. 

S(k) = I+ ~im{a[t~E(kt)]/ar). 1 

As is shown in [3], the compressibility equation for our approximation is 

where p~ is the bulk density of the fluid and 

@ = l/kT. 

The usual derivation of the virial pressure 1211 leads to 

Note that the derivative of the Mayer function is non-zero only at the surface of the excluded 
volume. Hence, only the values of the direct correlation function on this surface contribute. 
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Now, of the basic functions, only the Mayer functions are non-zero on the surface of 
the excluded volume and these are constant and equal to -1 on this surface. Hence the 
direct correlation functions can be taken outside the integrals and the remainder integrated 
explicitly by parts. The result is [3] 

~~ 

(27) PpV = P E  - T[Dllfi l(o) P; + 2D13fi3(0)1.. 

Equations (25) and (27) are used to obtain the equations of state discussed in section 5.1. 

3. The ~ari&on principle 

We seek a variational principle which in some sense leads to the best approximation 
possible for a direct correlation function of the form of equation (2). Such a principle 
is a straightforward generalization of that due originally to Anderson and Chandler [19] and 
has been established by Rosenfeld [20] and used by him and co-workers [18,20] for more 
general mean spherical approximations, for which 

(28) 
where cmBi(r) is zero outside the excluded volume V,  and c,po(r) is zero inside and 
known outside; the problem is to obtain the best approximation for cupi(r). Now the exact 
pair distribution function g,p(r) should be zero inside V, and the Anderson and Chandler 
function is minimized when this condition is satisfied. In the present instance this function 
is 

c&-) = cupiW + cap&-) 

where 

= P B & ~ ~ ( ~ ) / N o  = (PE/No) drc=p(T)exp(ik. r)  00) 

NO is the number of independent directions, 3 in the present case, and q(k )  is the NO x NO 
square matrix with elements q&). 

For the properties of the homogeneous fluid the programme then is to substitute 
equation (2) for cups(?-) in the expression (29) for I and then to minimize the resulting 
function I with respect to t h e d  parameters Ail, , A l ,  BII, Bl, Dll, Dl. The results are 
discussed in section 5. 

s 

4. Numerical and computational details 

4.1. Numerical methods 

To abbreviate the notation and to allow for generalizations, we write the direct correlation 
function in the form, 

where A$ and HA:(?-) are, respectively, the parameters and the basic functions which 
constitute the approximation for c,p(r). Then the parameters are the solutions of the 
equations, 
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For I defined by equation (29) and the direct correlation function defined by equation (31), 
this equation becomes 
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where 

d ( k )  = [l - q(k)]-' (34) 
Since the integral in equation (33) can decay slowly as IC -+ CO and most integrations have 
to be performed numerically, it is helpful to expand the last term and rewrite equation (33) 
as 

(35) 

The first integrand in equation (35) is a superposition of products of the basic functions, 
H$(r ) ,  which are non-zero in the same region of space. Since the molecules are hard, 
when at least one of the functions is a Mayer function, the corresponding integration can 
be carried out analytically. In the remaining cases the integrals can be evaluated in k-space 
using conventional quadrature methods. 

The third term in equation (35) had to be evaluated in k-space. The geatest difficulties 
were encountered in the evaluation and use of the perpendicular Mayer function, (k). In 
fact, in the evaluation of this Mayer function we resorted to a number of different techniques, 
but the one we found most effective and accurate is that given in section 2. 

The integrals in equation (35) all represent geomebical properties which are independent 
of the fluid density. Once they have been determined, equation (35) can be solved for the 
six parameters A$ for any given bulk density. In practice, the equations were solved by a 
Newton-Ralphson method. 

4.2. Simulation 

To provide a test of the approximation, various hard ellipsoidal fluids were simulated by 
us using standard Monte Carlo methods [22]. Most of the simulations were performed on 
the bulk fluid in isothermal-isobaric ensembles although a few were performed on a fluid 
confined to a slit with hard walls in a canonical ensemble. 

To avoid the overlap of the ellipsoids, the criteria of Perram and Wertheim [23] were 
employed and this technique alIowed us to check the pressure for the bulk systems by using 
the formula 

1 
i?$(O) + J d r  N$)(r)qpn(r) + - / dICI?~~(k)[q2(IC)8(IC)lp = 0 

(2703 

The function Fij is the Perram and Wertheim overlap function defined so that Fij < 1 
when ellipsoids i and j overlap, Fij~ = 1 when i and j just touch and Fij > 1 otherwise. 
The sum in equation (36) is carried out over all pairs of ellipsoids i and j for which 
(1 +E)' > Fij 2 1, with N being the number of ellipsoids in the simulation and E is a 
small quantity x 0.005~. For improved statistics we employed the histogramming technique 
described in [24]. The bulk density was obtained through 

(37) 
where q is the bulk packing fraction, pb the bulk density, U, the volume of a molecule and 
I; is the average box length'during the data collecting period of the simulation (i.e. after the 
equilibration period). 

q = V . ~ B  = N v , / i 3  
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The pressure of the confined fluids was obtained from the sum rule [l]. 

where B = I / k T ,  P is the pressure and paw is the density of particles of orientation (Y at 
the wall. These densities were obtained by fitting a cubic polynomial to the density profile 
close to the wall (usually to the closest 6-8 simulation points) and extrapolating to contact. 
The corresponding bulk density was identified with the average density near the centre of 
the slit where, apart from small statistical fluctuations, the density profiles were constant. 
In all,our simulations of a fluid in a slit only the isotropic phase of the fluid was seen. 

The simulation parameters are summarized in table 1. One Monte Carlo cycle is 
defined as one attempted move for each particle. As usual, a certain number of initial 
cycles were discarded to allow the system to reach equilibrium before sampling began. All 
simulations were begun with the fluid in a perfect nematic state i.e. with all molecules in the 
same direction. It was assumed that equilibrium was achieved when h and the number of 
molecules oriented in any given direction fluctuated about some mean values. It was found 
that the time for equilibrium to be achieved increased markedly as r j  increased, especially 
so as the molecules became more anisotropic. The cases b > a took particularly long times. 
This behaviour was no doubt due, at least in pa&, to the fact that the orientations of the 
molecules were restricted to a discrete number of directions. For a molecule to change 
direction a drastic change of configuration is required especially in the cases of the most 
anisotropic molecules. It may be that a more subtle form of sampling of the phase space 
available, akin to that developed for simulating long chain molecules (see e.g. [25]), is 
required if longer molecules and more dense systems are to be studied. 

Table 1. Parameten for the MC simulations. N represents the number of ellipsoids in the 
simulation. The last two columns give respectively the system studied (I for inhomogeneous 
and H homogeneous) and the ensemble used. 

Cycles Cycles 
Run b N aenemted discarded n 6 P I m  System Ensemble 

~~ ~~ 

1 0.5 750 82000 20000 0.231 3:06i0.03 I NVT 
2 0.5 750 75000 15000 0.318. 4.89i0.08 I NVT 
3 0.5 750 100000 15000 0.392 7.57i0.21 I NVT 
4 3.0 700 299000 100000 0.271 4.30i0.07 H NPT 
5 3.0 700 325000 150000 0.337 6.18+0.08 'H NPT 
6 3.0 730 I649000 1398000 0.395 8.7950.22 H NPT 
7 5.0 750 1042000 400000 0.211 3.95i0.22 H NPT 

5. Results and discussion 

5.1. Homgemouspuuids 

Equation (35) for the parameters, A:;, of the direct correlation function were solved for 
several values of the ratio bja in the range 0.35 to 5.0 and for values of the packing fraction, 
i l ,  defined by 

r j  = 4 z a 2 b p ~ / 3  (39) 
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from zero to 0.6 at intervals of 0.01. Since all the lengths in the theory can be scaled by 
the length a, we quote the results in units for which a = 1. The system is then described 
by just the two parameters, b and q. 

As the packing fraction tends to zero the direct correlation function tends exactly to 
the Mayer function. Because of the form, equation (2), chosen for the direct correlation 
function this is also a consequence of the present approximation. Thus as q -+ 0, one finds 
that the parameters of equation (2)  satisfy 

M Calleja and G Ricknyzen 

Amp -+ 1 Be# + 0 D,# + 0. (40) 
As an illustration of the results obtained for the parameters, we show a plot of six parameters 
as functions of packing fraction for the case b = 5.0 in figure 1. Although the parameters 
for the parallel and perpendicular components of B and D are quite close to each other 
as is assumed in scaling theory, this is not true of the components of A. The different 
components of the parameter D are so close that they cannot be distinguished from each 
other on the scale of the figure and are displayed as single lines. However the components 
of B are not as close as for the more nearly isotropic molecul& [7]. 

-3 . 

-5 - 

-G - 

0 0.1 0.2 0.3 0.4 0.5 
T) 

Figure 1. The weights, A$, in the direct correlation function of equations (2) and (31) plotted 
as functions of the packing haction, ‘I, for b = 5. The curves for DN and DI are too close to 
separate on this figure. 

Fortunately, for applications to other problems such as the structure of the 
inhomogeneous fluid, these curves have a simple monotonic structure and can be very 
well approximated by Pad6 approximants of the form 

where 8 is one or zero according to equation (40). With N*= 3, the error in fitting the 
curves over the whole range studied here is at most This means that for one value 
of 6 ,  the direct correlation function for any packing fraction, can be expressed in terms of 
42 constants, the five values of the constants in equation (41) for each of the six parameters. 
These constants are tabulated in tables 2 and 3 for the cases of b = 0.5 and 5.0, respectively. 
The Pad6 approximant representation, (41), of tbe results is very sensitive to the values of 
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the parameters. As can be seen from the tables, although the curves of DmB in figure 1 
are very close the values of the corresponding coefficients, ai, bi, are easily distinguished. 
It may well be that an alternative representation could be found in which the coefficients. 
ai, bi, are less sensitive to the value of A in equation (41). One would like ultimately to 
provide simple formulae for the constants ai and bi as functions of the semi-major axis, b, 
but as yet we have the results for an insufficient number of values of b to do this with any 
confidence. 

Table 2. The Pad6 coefticienrs for the paramerers A$ when b = 0.5. The "dues of the 
coefficients ai, b; in equation (41) give the weighting parameters as functions of 1. 

nl -1.066969 0.835972 -0.552611 -1.022326 -0.801 193 -0.829756 
a2 0.268681 2.594 193 -2.335471 -2.654038 -1.258933 -2.070948 
a3 -0.466343 -0.479055 0.467843 2.447446 -0.628142 1.138736 
bl -3.915922 -1.773800 -4.476443 -4.205317 -2.721 396 -1.673312 
bz 6.443093 3.580753 7.810699 6.730723 2.107957 -1.993637 

-5.598099 -6.697645 -6.415088 -5.030957 -1.563664 5.400749 
b4 2.176021 4.140165 2.136955 1.578775 0.679518 -2.781704 

Table 3. As table 2 bit  with b = 5.0. 

Ail Ai Ell BL DII Di 

q 3.223339 1.483077 -0.090351 -0.403844 -0.128378 -0.086895 
a2 5.110642 1.730769 -1.274128 1.538752 -1.028397 -1.352933 
a3 -5.562093 17.464436 -0.740478 -5.224476 -0.982240 -8.287 195 
bl -1.311733 -1.437952 4.698872 -4.211953 2.890324 7.302807 
b2 2.176 159 8.564663 -35.320405 16.259273 -9.642629 13.087716 
b3 -4.981 834 -8.983 340 65.708371 -33.637285 2.514553 -82.494883 
b4 3.716553 -0.767937 -40.367085 23.912027 5.540408 74.089245 

Once the parameters, A$, are known it is possible to insert them into equations (25) 
and (27) and so derive the equation of state from both the compressibility and the virial. 
As was pointed out in [7], for the case b = 1, that is for spheres, we obtain the results of 
the~PY approximation and the two curves are not identical. It is usual in this case to use 
the linear combination from Carnahan and Starling [26] for the pressure and this is in good 
agreement with the results of computer simulation. When the ellipsoids are not spherical, 
the original argument of Carnahan and Starling is no longer valid and it is doubtful whether 
the same combination of the two formulae is appropriate. This itself merits investigation. 
We have therefore chosen to display both formulae (25) and (27), as well as the linear 
combination chosen by Carnahan and Starling, the CS curve. For the values b = 0.5, 3 and 
5 the resultant curves are displayed in figures 2-4 where the compressibility factor, ,8P/p ,  
is plotted as a function of packing fraction, 17. Also shown in these figures are the results 
of computer simulations of three different kinds. The first set, indicated by daggers on the 
figure, have been performed by us on the same model of a homogeneous fluid. The second 
set, indicated by diamonds, come from simulations by Frenkel and Mulder [27,28], on a 
fluid offreely rotazing ellipsoids with the same dimensions and the same packing fractions. 
The third set have been obtained by simulation of the inhomogeneous fluid and deducing 
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the pressure of the homogeneous fluid from the density profile by means of equation (38) 
and the procedure given in section 4.2. 
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F i g ”  2. The compressibility factor, Z = @ P I P ,  of a fluid of hard ellipsoids with 
elongation b = 0.5 as a function of the packing fraction, ‘I. The conlinuous curve is 
from the compressibility, the dashed C U N ~  from the virial and the dot4ash curye from the 
CS combination. The circles show the results derived from simulations of the inhomogeneous 
fluid as discussed in section 4.2. 
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Figure 3. The compressibility factor, Z = @ P / p ,  of 3 fluid of hard ellipsoids with elongation 
b = 0.5 as afunction of the packing fraction, 9. The curves have the same meaning as in figure 2. 
The points show results from simulations of a homogeneous fluid; the daggers derive from the 
simulations of the ROM reported in this paper, the diamonds are obtained from simulations of 
a similar fluid with freely lolaling molecules by Frenkel and Mulder [25.12]. 

For b = 0.5 and 3.0 (see figures 2 and 3), as for the previous cases [7], simulations 
of the restricted orientation model (ROM) are in good accord with the theory especially 
with the CS curve. However, when b = 3.0, the pressure in the fluid of freely rotating 
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Figure 4. As figures 2 and 3, but with b = 5.0 

molecules appears to be higher than that of the ROM. The fluid of more elongated molecules 
(b = 5.0, figure 4)  shows this latter difference is greater and more evident in figure 4. Also, 
the pressure in the ROM when b = 5.0 and 7 = 0.211 is slightly greater than that given by 
the theory, although the error is such that one cannot be sure of this. 

We have also searched for any local instability in the isotropic phase over the range of 
parameters studied. As shown in [5 ] ,  the condition for such an instability is 

(42) A = Det[36,p/p~ - &p(O)] = 0 
This determinant factorizes and the condition is equivalent to 

AO = 3/pB - ?ll(o) + 2 ? ~ ( 0 )  = 0 ~(43) 
For values of b in the range, 0.35 c b < 5, this function does not vanish and the isotropic 
phase is locally stable. Figure 5 displays plots of AO versus IJ  for b = 0.5, 5.0 from 
which it can be seen that A,, tends to fall as IJ  increases from zero. However, it reaches 
a minimum at a finite value of I J  and thereafter increases. These results are typical, the 
curves for intermediate values lying between these two. This negative result agrees with 
o& own simulations and with those of simulations of the fluid of freely rotating molecules 
[15,24,25,27,28] with values of b in the range 0.5 < b < 3.0. However when b = 5.0 
our simulations show evidence that the isotropic state is unstable, although as explained in 
section 4.2 simulations of such anisotropic molecules in the ROM take a very long time 
to reach equilibrium and our systems have not yet done so: others [ 15,24,25,27,28] have 
observed such a transition in a fluid of freely rotating ellipsoids although there is not yet 
precise agreement on the value of b at which the transition sets in. 

5.2. Inhomogeneous &ids 

Once one has obtained the direct correlation function for the homogeneous fluid one can 
insert it into one of the many density functionals which depend upon it in order to derive 
the structure of the inhomogeneous state. It is well known [9] that the best results are 
obtained if a weighted or averaged density is used rather than the local one. However, 
this uses considerably greater computer time and memory and, in any case, local theories 
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Figure 5. A plot of A0 (defined in equation (44)) as a function of the packing fmtion, 9 ,  for 
the cases of b = 0.5 and 5.01. The isotropic state is locally unstable when Ao iS negative. The 
corresponding curves for intermediate values of b lie belween these two curves, showing that 
in all these cases, acmrding to the theory the isotropic state is locally stable. 
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can produce satisfactory results for confined hard fluids except very close to the walls. 
Furthermore, the weighting function is itself a matter for investigation when the molecules 
are no longer spheres. Accordingly, in this first analysis of the problem of the Auid confined 
between hard parallel planar walls using the new direct correlation function, we have used 
the HNC functional. The method and many of the basic equations have already been given 
in [l] and [3] and will not be repeated here. 

The density functional requires as input the functions 

F O p ( z )  = 1 dx dy F=p(r) 

& ( z ) = /  bdy&p( r ) .  (47) 

(45) 

(46) &(z)  = / dx dy f d ~ )  

The first two of these functions have been given in [3]. Due to the relationship (4), any 
component of s(z) can be expressed in terms of the corresponding component of &z). In 
fact one can show that 

(48) S ( z )  = 5P(z)  - zP(2). 
Equations (2), (43, (46) and (48) determine between them the direct correlation function 
as it appears in the density functional. 

The equations for the components of the density which minimize the HNC functional 
have been given in 131 and we have now solved them for the new form of direct correlation 
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function. The results for the cases of b = 0.5 and 2.0 are displayed in figures 6 and 7, where 
they are compared with our own simulation results on the same systems. As was expected, 
except very close to a wall, the results agree with each other. At the wall the present 
improved theory overestimates the density, a property shared with the HNC functional in 
the spherical case. One would expect this discrepancy to be diminished, or even disappear, 
in a weighted density approximation. In fact, at the wall the simpler theory [3] agrees rather 
better with the simulation. However, this is fortuitous. For the simpler theory predicts an 
isotropic-nematic transition where there isn't one and this spurious effect shows up in the 
structure of a confined fluid [5]. Calculations and simulations with the improved theory 
have not yet been extended to the region where one might expect to see a transition. 

0.7 

Figure 6. The density profiles of the molecules with axes p d l e l  and perpendicular to the walls 
of the hard ellipsoidal fluid with b = 0.5 confined between two walls. One wall is situated at 
L = 0 and only half the profile is illustrated. The c w e  is derived from the theory discussed in 
this paper and the points come from the simulations discussed in section 4.2. 

Recently, Rosenfeld [29] has proposed a density functional for an inhomogeneous fluid 
comprised of general hard convex molecules based upon geometrical properties of the 
individual molecules. When the excess free energy is truncated at the second order, it leads 
to a form similar to that treated in this paper [29]. As yet, it has not been applied explicitly 
to particular systems so that one cannot compare the results with ours. Nevertheless, with 
similar ingredients the two functionals can be expected to lead to similar results. 

5.3. Summary and conclusions 

We have been investigating the properties of the restrcted orientation model of homogeneous 
and inhomogeneous hard ellipsoidal fluids on the basis of the approximation (2) for the 
direct correlation function of the homogeneous fluid, and with the parameters determined 
by the Anderson-Chandler variational principle. The twin objectives have been to study 
(a) how well the approximation represents the true properties of the ROM and (b) for the 
homogeneous fluid, how closely the properties of the ROM resemble those of the fluid in 
which the molecules can rotate freely. Because of limitations in computer time and memory 
the investigation has so far been confined to ellipsoids for which the ratio b lies in the range 
of 0.35 to 5. 
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Figure 7. As figure 6 but with b = 2.0. 

For the range of values of b studied the two equations of state still enclose the simulated 
values for the pressure which themselves, forb c 3.0, are close to the values obtained from 
the simulation of freely rotating molecules. Forb = 5.0, the pressure of the fluid of freely 
rotating molecules is greater than that of the ROM especially at the higher densities. For 
0.35 < b < 3.0 we do not expect to see an isotropic-nematic transition and one does 
not appear in either the theory or simulation. For more prolate ellipsoids transitions have 
been observed in the simulation of the fluid of freely rotating molecules and we have some 
evidence from simulation that the isotropic state of the ROM is unstable when b = 5.0 
and the density is sufficiently great. However, the present theory does not predict such a 
transition. It appears that the condition for an isotropionematic transition is more sensitive 
to the form of the direct correlation function than the equation of state and that a more 
general form than that adopted in this paper will be required; this is a matter for further 
investigation. 

Nevertheless, the present theory will predict an isotropionematic transition for 
sufficiently anisotropic molecules; this follows from the general arguments originally given 
by Onsager [ll,27]. To verify that this is a consequence of the present theory, consider 
what happens as ps + 0. Then according to equation (40), the theory leads to 

and the condition (43) for the instability of the isotropic phase becomes 

The Fourier transforms of the Mayer functions here are simply the negatives of the respective 
excluded volumes, -VJ. and -yl. In the limit of b becoming large, i.e. prolate ellipsoids, 
these becomes 

VL = 4 ~ a b  = 32za2b/3 (51) 
and VL dominates on equation (50). The isotropic state is therefore locally unstable when 

= a/b. (52) 
As b/a becomes very large 0 + 0 and the use of equation (49) is justified. 
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Similarly, at the other extreme of oblate ellipsoids one can still use equation (49), but 

(53) 
This term still dominates equation (50) but now one finds that the instability occurs when 
r~ = b/a  which becomes small as a -+ 0, thus justifying the use of equation (49) in this 
instance, too. The theory can therefore describe the transition but, for prolate ellipsoids it 
overestimates the value of b at which it can take place. 

The structure of the inhomogeneous fluids has also be& investigated using the same 
approximation for the direct correlation function but with the HNC functional to describe 
the inhomogeneous system. The results again agree with simulated ones except very close 
to the wall. An improved form of density functional will be required to improve upon this 
and this is subject to further research. 

Altogether then it appears that thus far the model can provide a satisfactory equation 
of state and a satisfactory description of the structure of the inhomogeneous isotropic fluid. 
However, it needs improvement if the nematic state is to be described quantitatively. Further 
calculation is also required to extend the results of the theory to fluids with more anisotropic 
molecules and a more efficient sampling method is required for the simulation of such 
fluids. Neveaheless. the present approach should also provide a practical first stage in the 
development of theories of fluids of molecules interacting through softer and longer ranged 
potentials 
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